Producto de dos binomios con un término común, de la forma
x2 + (a + b)x + ab = (x + a) (x + b) |
Demostración:
Veamos un ejemplo explicativo:
Tenemos la expresión algebraica
x2 + 9 x + 14
obtenida del producto entre (x + 2) (x + 7 )
¿Cómo llegamos a la expresión?
a) El cuadrado del término común es (x)(x) = x2
b) La suma de términos no comunes multiplicada por el término común es (2 + 7)x = 9x
c) El producto de los términos no comunes es (2)(7) = 14
Así, tenemos:
x2 + 9 x + 14 = (x + 2) (x + 7 )
Entonces, para entender de lo que hablamos, cuando nos encontramos con una expresión de la forma x2 + (a + b)x + ab debemos identificarla de inmediato y saber que podemos factorizarla como (x + a) (x + b)
Producto de dos binomios con un término común, de la forma
x2 + (a – b)x – ab = (x + a) (x – b) |
Demostración:
Entonces, para entender de lo que hablamos, cuando nos encontramos con una expresión de la forma x2 + (a – b)x – ab debemos identificarla de inmediato y saber que podemos factorizarla como (x + a) (x – b).
Producto de dos binomios con un término común, de la forma
x2 – (a + b)x + ab = (x – a) (x – b) |
Demostración:
Entonces, para entender de lo que hablamos, cuando nos encontramos con una expresión de la forma x2 – (a + b)x + ab debemos identificarla de inmediato y saber que podemos factorizarla como (x – a) (x – b).
Producto de dos binomios con un término común, de la forma
mnx2 + ab + (mb + na)x = (mx + a) (nx + b) |
En este caso, vemos que el término común (x) tiene distinto coeficiente en cada binomio (mx y nx).
Demostración:
Entonces, para entender de lo que hablamos, cuando nos encontramos con una expresión de la forma mnx2 + ab + (mb + na)xdebemos identificarla de inmediato y saber que podemos factorizarla como (mx + a) (nx + b).
Cubo de una suma
a3 + 3a2b + 3ab2 + b3 = (a + b)3 |
Entonces, para entender de lo que hablamos, cuando nos encontramos con una expresión de la forma a3 + 3a2b + 3ab2 + b3debemos identificarla de inmediato y saber que podemos factorizarla como (a + b)3.
Cubo de una diferencia
a3 – 3a2b + 3ab2 – b3 = (a – b)3 |
Entonces, para entender de lo que hablamos, cuando nos encontramos con una expresión de la forma a3 – 3a2b + 3ab2 – b3debemos identificarla de inmediato y saber que podemos factorizarla como (a – b)3.
No hay comentarios:
Publicar un comentario